Exhibiting Sha[2] on Hyperelliptic Jacobians

نویسنده

  • N. BRUIN
چکیده

We discuss approaches to computing in the Shafarevich-Tate group of Jacobians of higher genus curves, with an emphasis on the theory and practice of visualisation. Especially for hyperelliptic curves, this often enables the computation of ranks of Jacobians, even when the 2-Selmer bound does not bound the rank sharply. This was previously only possible for a few special cases. For curves of genus 2, we also demonstrate a connection with degree 4 del Pezzo surfaces, and show how the Brauer-Manin obstruction on these surfaces can be used to compute members of the Shafarevich-Tate group of Jacobians. We derive an explicit parametrised infinite family of genus 2 curves whose Jacobians have nontrivial members of the Sharevich-Tate group. Finally we prove that under certain conditions, the visualisation dimension for order 2 cocycles of Jacobians of certain genus 2 curves is 4 rather than the general bound of 32.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Decomposing Jacobians of Hyperelliptic Curves

Many interesting questions can be asked about the decomposition of Jacobians of curves. For instance, we may want to know which curves have completely decomposable Jacobians (Jacobians which are the product of g elliptic curves) [4]. We may ask about number theoretic properties of the elliptic curves that show up in the decomposition of Jacobians of curves [2]. We would also like to know how ma...

متن کامل

The average size of the 2-Selmer group of Jacobians of hyperelliptic curves having a rational Weierstrass point

We prove that when all hyperelliptic curves of genus n ≥ 1 having a rational Weierstrass point are ordered by height, the average size of the 2-Selmer group of their Jacobians is equal to 3. It follows that (the limsup of) the average rank of the Mordell-Weil group of their Jacobians is at most 3/2. The method of Chabauty can then be used to obtain an effective bound on the number of rational p...

متن کامل

Isogenies and the Discrete Logarithm Problem on Jacobians of Genus 3 Hyperelliptic Curves

We describe the use of explicit isogenies to reduce Discrete Logarithm Problems (DLPs) on Jacobians of hyperelliptic genus 3 curves to Jacobians of non-hyperelliptic genus 3 curves, which are vulnerable to faster index calculus attacks. We provide algorithms which compute an isogeny with kernel isomorphic to (Z/2Z) for any hyperelliptic genus 3 curve. These algorithms provide a rational isogeny...

متن کامل

Fields of definition of torsion points on the Jacobians of genus 2 hyperelliptic curves over finite fields

This paper deals with fields of definition of the l-torsion points on the Jacobians of genus 2 hyperelliptic curves over finite fields in order to speed Gaudry and Schost’s point counting algorithm for genus 2 hyperelliptic curves up. A result in this paper shows that the extension degrees of the fields of difinition of the l-torsion points can be in O(l) instead of O(l). The effects of the res...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006